
Provenance-Enabled Explainable AI
JIACHI ZHANG, Alibaba Cloud, China
WENCHAO ZHOU, Alibaba Cloud, China
BENJAMIN E. UJCICH, Georgetown University, USA

Machine learning (ML) algorithms have advanced significantly in recent years, progressively evolving into

artificial intelligence (AI) agents capable of solving complex, human-like intellectual challenges. Despite the

advancements, the interpretability of these sophisticated models lags behind, with many ML architectures

remaining “black boxes” that are too intricate and expansive for human interpretation. Recognizing this issue,

there has been a revived interest in the field of explainable AI (XAI) aimed at explaining these opaque ML

models. However, XAI tools often suffer from being tightly coupled with the underlying ML models and are

inefficient due to redundant computations.

We introduce provenance-enabled explainable AI (PXAI). PXAI decouples XAI computation from ML

models through a provenance graph that tracks the creation and transformation of all data within the

model. PXAI improves XAI computational efficiency by excluding irrelevant and insignificant variables and

computation in the provenance graph. Through various case studies, we demonstrate how PXAI enhances

computational efficiency when interpreting complex ML models, confirming its potential as a valuable tool in

the field of XAI.

CCS Concepts: • Computing methodologies→ Artificial intelligence; • Information systems→ Data
mining; • Mathematics of computing→ Approximation algorithms.

Additional Key Words and Phrases: Explainable AI, Data Provenance, Probabilistic Graphical Model, Multi-

Layer Perceptron, 𝑘-means Clustering

ACM Reference Format:
Jiachi Zhang, Wenchao Zhou, and Benjamin E. Ujcich. 2024. Provenance-Enabled Explainable AI. Proc. ACM
Manag. Data 2, 6 (SIGMOD), Article 250 (December 2024), 27 pages. https://doi.org/10.1145/3698826

1 Introduction
In recent years, we have witnessed the great success of machine learning (ML) and artificial

intelligence (AI) in all facets of daily life. From healthcare diagnostics to financial forecasting,

the widespread deployment of AI/ML systems is transforming industries. Unfortunately, most

AI/ML models remain black boxes, and the growing size and complexity of AI/ML models make

those models difficult for humans to understand or explain. This lack of explainability undermines

transparency and robustness, leading to significant challenges in user acceptance [8, 19] and

regulatory compliance [56, 57].

The need for explainability is particularly pressing in complex AI pipelines, where understanding

how specific inputs influence outputs can ensure accountability and foster trust. Traditional explain-

able AI (XAI) tools [28, 50] have attempted to bridge this gap. Depending on the objective to explain,

Authors’ Contact Information: Jiachi Zhang, Alibaba Cloud, Hangzhou, China, zhangjiachi.zjc@alibaba-inc.com; Wen-

chao Zhou, Alibaba Cloud, Hangzhou, China, zwc231487@alibaba-inc.com; Benjamin E. Ujcich, Georgetown University,

Washington, DC, USA, bu31@georgetown.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/12-ART250

https://doi.org/10.1145/3698826

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

https://doi.org/10.1145/3698826
https://doi.org/10.1145/3698826

250:2 Zhang et al.

Deploy / update

Training set:

Train

Ask for explanation
of

Abnormal
performance

User Developer

Explanation:

Generate
sample

XAI tools

Fig. 1. A typical explainable AI (XAI) workflow.

there are global XAIs that characterize AI/ML models (e.g., GA
2
Ms [10] and MMD-critic [31]),

and local XAIs that explain a single model inference output (e.g., LIME [47] and counterfactual

explanation [13, 40, 57]). Depending on the applicability, there are model-specific XAIs that are
designed for specific models (e.g., LRP [5] and XGNN [61] for neural networks), and model-agnostic
XAIs that apply to all models, (e.g., ICE [23], PDA [62] and SHAP [36]). In this paper, we focus on

local and model-agnostic XAI tools that have the widest applicability.

Figure 1 illustrates a typical scenario in which AI developers can use XAI tools [25, 45]. First,

black-box AI/MLmodels are trained from a training data set, denoted by𝐷 (®x). After the deployment

or update, the model is ready for service to users. A user gives an input instance ®x and receives a

model inference output 𝑓 (®x). Sometimes, especially when 𝑓 (®x) is undesirable, the user may ask

the AI developer for explanations of 𝑓 (®x).
To explain this output, developers typically take advantage of XAI tools following a sample-

then-inference procedure: the XAI tools repeatedly generate a sample ®x′ in the neighborhood of

the original input instance ®x, run a model inference for a corresponding output 𝑓 (®x′), and finally

compute an explanation E(𝑓 (®x)) based on ®x′ and 𝑓 (®x′). The sample-then-inference procedure is

common when using local and model-agnostic XAIs tools.

However, previous XAI tools fall short of practical deployability in two regards. First, existing XAI
tools are often coupled with underlying AI/ML models. The explanations can be misleading when the

output cannot be reproduced [44] (e.g., the model is updated, involves stochastic computations or the

hyperparameters of model inference are modified) as the data creation and transformation within

the model is not recorded. Second, existing XAI tools are inefficient due to redundant computation.
For example, the differences between sampled instances and the original input instance might be

small (e.g., ICE and counterfactual explanation). Consequently, only a small subset of the variables

and computations will change during the process of model inference. The unchanged variables and

computations are irrelevant to the XAI computation but are redundantly computed. However, it

is difficult to trace the irrelevant variables and computations without knowing the computation

dependencies.

Tomitigate these challenges, we leverage the insight that we can collect data inference derivations,

which allows us to use data provenance [9, 24] for AI/ML models. Although data provenance has

been proposed in different stages of machine learning, including the model training phase [7, 59],

the model inference phase [37, 58] and both phases [51, 54], no prior work addresses the limitations

of local and model-agnostic XAI tools. The “approximate provenance” approach [46, 58] accelerates

provenance-related computation by excluding “insignificant” derivations. However, to the best of

our knowledge, no provenance work approximates the explanations derived from the local and

model-agnostic XAI tools.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:3

Inner Product Act

Weight
Vector 0

Input
Vector

Weight
Vector 1

Softmax Vector

Inner Product Act

Inner Product Act Inner Product Act

Softmax

(b)

Node to Factor

Init NodeMsg
Node 0 → Factor 0

Potential
Factor 0

FactorMsg
Factor 0 → Node 0

Factor to Node

Scale

Subgraph

Probability
Node 0

(a)

Subgraph

NodeMsg
Node 0 → Factor 0

Fig. 2. Examples of PXAI provenance.

In this paper, we develop a local and model-agnostic XAI tool that we call provenance-enabled
explainable AI (PXAI). To decouple XAI tools from the original AI/ML models, we develop a

provenance model that acts as a comprehensive log of the model inference process, tracking the

creation and transformation of all data within the model. For example, Figure 2 presents simpli-

fied provenance graphs that track the loopy belief propagation [41] of a probabilistic graphical

model [32] (a), and the forward pass of a multi-layer perceptron (b). In these provenance graphs,

round vertices represent various variables, including inputs (yellow), model parameters (purple),

intermediate results (orange), and outputs (green). computation dependencies are recorded by

edges, while operator vertices (blue) specify the computational operations performed. By con-

structing provenance alongside model inference, PXAI ensures a comprehensive and transparent

documentation of the inference pipeline.

Provenance enables dependency analysis, which accelerates XAI computation by excluding

redundant computations. A user provides a model to PXAI, which builds and maintains the relevant

provenance graph. When a user requests the explanations of a model inference output, PXAI

queries the provenance graph by backward tracing to remove the computation dependencies of

other outputs and forward tracing to show how an input feature contributes to other variables.

PXAI optimizes for cases in which such traces are large by creating an approximate subgraph

that approximates the outputs and explanations derived from the original graph (i.e., the XAI-

approximate property). Based on the aforementioned data structures and algorithms, PXAI enables

explainable and efficient model inferences.

To demonstrate the efficacy of PXAI, our experiments across several case studies show that PXAI

significantly lowers the performance overhead compared to the original XAI (i.e., ICE) computation

by up to 5 orders of magnitude. As a result, PXAI enables efficient explanations across models and

provides a promising direction for local and model-agnostic XAI tools.

Our main contributions include the following:

(1) We define and develop a provenance model that tracks the creation and transformation of

all data within AI/ML models.

(2) We develop provenance-enabled model inference, which reproduces model inference

results and excludes irrelevant variables and computations. Additionally, we propose XAI-
approximate and develop provenance-enabled approximate subgraph searching meth-

ods, which exclude insignificant variables and computations without violating the XAI-

approximate property.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:4 Zhang et al.

A

B

C

D

Known
node

Unknown
node

Factor node

A

C

B D@$ @%

(a) (b)

Links(61,306)

topic("ResearchProject",306)
HasWord("design",39)

Links(39,153)
HasWord("gmt",306)

HasWord("Sunday",61)

HasWord("public",61)

Links(61,39)

(d)

!(#) %

(c)

Fig. 3. Examples of a Markov Network (a) and the factorized Markov Network (b). (c) shows the XAI running
time on a PGMapplication, text classification. (d) shows a slice of the PGMof the text classification application.

(3) We design and implement PXAI using C++. We extensively evaluate PXAI through
representative case studies of distinct MLmodels and application domains: probabilis-
tic graphical models (visual question answering [4] and text classification [17]), multi-layer

perceptron (credit score classification [30]), and 𝑘-means clustering (ML deletion [22]). Our

evaluation results demonstrate that PXAI effectively and efficiently explains black-box AI/ML

models compared to prior approaches.

2 Motivation: Applying Existing XAI tools on a PGM Application
We motivate the need for PXAI using an application of explaining a probabilistic graphical model

and demonstrate the shortcomings of existing XAI tools.

2.1 Probabilistic Graphical Model
The probabilistic graphical model (PGM) [32] is an AI/ML model that uses a graph-based represen-

tation where nodes represent random variables and edges represent probability dependencies to

encode complex probability distributions. There are two types of graphs, a directed graph (Bayesian

Network) and undirected graph (Markov Network). Both graphs “break up” the probability distribu-

tion into smaller pieces (termed factors), then define the joint probability as the product of factors.

For example, Figure 3 (a) presents a Markov Network that consists of four nodes. Notably, in Markov

Networks, each fully connected subgraph (e.g., node A, B, C and node B, D) forms a factor, and the

joint probability of this Markov Network is defined as P(𝐴, 𝐵,𝐶, 𝐷) = 1

𝑍
𝜙1 (𝐴, 𝐵,𝐶) 𝜙2 (𝐵, 𝐷) where

the factor 𝜙 is a user-defined function (termed potential function) and 𝑍 is a scalar.

The model inference of probabilistic graphical models normally refers to a process that computes

the marginal probability distribution of an unknown node when conditioned on the known nodes,
whose probabilities are evidenced. A common and efficient solution is to convert a PGM to a factor

graph [32], a bipartite graph that interconnects a set of factor nodes (e.g., 𝜙1 and 𝜙2) to a set of

variable nodes (e.g., Figure 3 (b)), then run a belief propagation [35] [21] for Bayesian Networks or

loopy belief propagation [41] for Markov Networks.

2.2 Running Example
We use a running example of text classification [17] from Alchemy [1, 18], an open-source AI

software that implements probabilistic graphical models. The goal of this application is to classify

the topic of a document given a series of input features of what words or hyperlinks appear in the

document. Alchemy builds a Markov Network that consists of known nodes as input features and

unknown nodes as outputs, then estimates the probability of each topic of each document using

model inference algorithms.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:5

As it is challenging to explain the model inference outputs computed from complex belief

propagations, we run XAI tools on this application. In particular, we run the individual conditional

expectation (ICE) algorithm [23] to estimate the influences of all input features on one output.

Following the sample-then-inference procedure, we change the value of an input feature, then

run loopy belief propagation, one by one. To evaluate the performance, we sample from testing

data containing more than 50k input features. Figure 3 (c) shows Alchemy’s total run time (orange

curve) and the loopy belief propagation run time (red curve) with respect to different sample sizes.

Both curves grow super-linearly, which means that it will take more than 30 hours to finish the ICE

computation on the whole testing data set.

We now consider why the XAI computation is inefficient:

Challenge C1 (Irrelevant Changes): Figure 3 (d) presents a slice of the PGM of this application.

The yellow circles represent known nodes, the green circles represent unknown nodes, and the red

circle represents the output 𝑓 (®x) to explain, which is labeled by topic(“Research Project”,306).
In this figure, a small group of solid nodes and edges represents a subgraph where the values of

intermediate computation results differ when the value of the rightmost known node 𝑥 is changed.

That indicates there are irrelevant variables and computations when running model inference.

Challenge C2 (Insignificant Changes): The size of a known node represents its influence on

𝑓 (®x) estimated by ICE. The larger node indicates the larger influence. In this case, only two input

features have higher influences than 0.01, and the influences of most input features are lower than

0.0001. That indicates that, given an output to explain, there are insignificant input features and

corresponding computations.

Intuition: In summary, challenges C1 and C2 drive the development of PXAI, emphasizing that

computational efficiency can be significantly enhanced by omitting irrelevant and insignificant

variables and intermediate computations.

3 PXAI Overview
We now present an overview of PXAI’s design and application in Figure 4. The upper part of this

figure shows how AI developers can use PXAI to compute explanations for users, and the lower part

of this figure presents PXAI’s design and workflow. AI developers train and deploy ML models as

an AI service to users. After giving an input instance ®x to the model, the user asks for explanations

of a model inference output 𝑓 (®x). Instead of taking advantage of existing XAI tools, we design and

develop provenance-enabled explainable AI (PXAI) that accomplishes the following design goals:

• Goal G1 (Decoupling): PXAI should decouple the XAI toolkit and reasoning capabilities

from the original AI/ML model to enable a generalizable approach across models.

• Goal G2 (Efficiency): PXAI should improve the computational efficiency of XAI tools to

enable practical and timely explanations.

The goals are accomplished through the following stages:

Provenance Maintenance When a user gives an input instance ®x, PXAI builds and maintains

a provenance graph during the process of model inference that computes the output 𝑓 (®x). For
example, Figure 4 presents a provenance graph (the upper left graph) that is denoted by𝐺 = (𝑉 , 𝐸).
The provenance graph is a directed acyclic graph that records the values and the computation

dependencies of the model inference outputs 𝑓 (®x) and 𝑔(®x) that are represented by green rounds

(e.g., the probabilities of unknown nodes in a PGM). The outputs rely on several intermediate

variables that are represented by orange rounds, and originate from the input features represented

by yellow rounds, as well as model parameters by purple rounds. Between the variables, there are

vertices (blue rectangles) that represent the operators (e.g., Sum,Mul) connecting the input variables
and output variables. We formally define and describe PXAI’s provenance model in Section 4.1.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:6 Zhang et al.

Provenance-enabled XAI

Deploy / update

Training set:

Train

Ask for explanation
of

User Developer

Provenance query

Provenance-enabled
approximate

subgraph searching

Provenance-enabled
model inference

/

,

enabled

subgraph

/

Input vertex Derived vertex

Output vertex Operator vertex

Parameter vertex

Provenance maintenance

Fig. 4. Overview of PXAI’s design and application.

PXAI decouples XAI computations from the original model (goal G1) because the provenance
graphs record all information required by XAI tools. Both the model outputs and explanations can

be derived from the provenance graphs instead of from the models.

Based on the provenance graphs, PXAI improves the computation efficiency of XAI tools (goal

G2) as follows:
Provenance QueryWhen a user requests the explanations of a model inference output 𝑓 (®x), PXAI
allows AI developers to trace the full computation dependencies of 𝑓 (®x) (i.e., a backward trace). For
example, in Figure 4, the lower right graph presents the backward trace from 𝑓 (®x), which is denoted
by 𝐺 (𝑓 (®x)). That backward trace is a subgraph of𝐺 that excludes the computation dependencies

of other outputs, such as 𝑔(®x); therefore, it improves the computation efficiency of XAI (addressing

challenge C1). In addition, PXAI supports a forward trace that traces how a variable (e.g., an input

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:7

Table 1. Vertex classes and descriptions.

Vertex class Description

Variable Definition: A vertex that represents a variable in a process of ML model

inference

Properties: ID, value, contribution, derivative
Subclasses: Input vertex, Parameter vertex, Derived vertex, Output vertex

Operator Definition: A vertex that represents an operator in a process of ML model

inference

Properties: ID, params
Subclass examples (user-defined): Sum vertex,Mul vertex, Inv vertex, Exp
vertex, Scale vertex, ReLU vertex, Sigmoid vertex, NearestCentroid vertex

Table 2. Edge classes and descriptions.

Edge class Description

Variable-to-Operator Definition: An edge that represents that a variable is one of the

inputs of an operator

Properties: ID, contribution, derivative
Operator-to-Variable Definition: An edge that represents that a variable is an output of an

operator

Properties: ID

feature 𝑥1) contributes to other variables. We provide formal descriptions and several examples in

Section 4.1.

Provenance-Enabled Approximate Subgraph Searching Sometimes the backward trace result

is too large or too dense, which leads to a large XAI computation overhead. To mitigate this, PXAI

searches for an approximate subgraph, denoted by 𝐺∗ (𝑓 (®x)). For example, the lower left graph

in Figure 4 presents an approximate subgraph of 𝐺 (𝑓 (®x)). The approximate subgraph improves

the computation efficiency of model inference and XAI by excluding insignificant variables and

computation dependencies (addressing challenge C2).
We say that the approximate subgraph is XAI-approximate when the outputs and explanations

derived from the approximate subgraph are approximate to the outputs and explanations derived

from the original graph. We provide formal definitions of the approximate subgraphs and the

algorithms of provenance-enabled approximate subgraph searching in Section 5.

Provenance-Enabled Model Inference Following the provenance query and provenance-enabled
approximate subgraph searching, PXAI computes the explanations E(𝑓 (®x)) that are derived from

𝐺 (𝑓 (®x)), or the approximate explanations E∗ (𝑓 (®x)) that are derived from 𝐺∗ (𝑓 (®x)) to the output

𝑓 (®x).
Similar to previous XAI tools, PXAI adopts XAI features (e.g., feature attributions and coun-

terfactual explanations) to compute explanations following the sample-then-inference procedure.

However, during the inferring phase, PXAI improves the computation efficiency by excluding

irrelevant variables and computations (addressing challenge C1). For example, in 𝐺 (𝑓 (®x)) from
Figure 4, when a sample of the input instance only differs in one input feature 𝑥1, repeating the

computation not involving 𝑥1 is not necessary and can be avoided. We provide the algorithms of

provenance-enabled model inference in Section 4.2.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:8 Zhang et al.

4 PXAI Provenance Model
We formally define a provenance model that tracks the creation and transformation of all data within

AI/ML models. We develop a provenance-enabled model inference approach that accelerates XAI

computations by avoiding irrelevant computations of model inference.

4.1 Definitions
PXAI’s provenance graph, denoted by G = (V , E), is a directed acyclic graph (DAG) where the

vertices represent variables and operations, and the edges represent computation dependencies of

model inference. The provenance graph maintains variable values, contributions and derivatives of

vertices and edges. Based on the provenance graph, we can analyze the derivations of a variable

(i.e., backward trace) and how a variable contributes to other variables (i.e., forward trace).

Table 1 shows the definitions and descriptions of the vertex classes. Each vertex 𝑣 ∈ 𝑉 belongs

to either the Variable vertex or the Operator vertex. Among the Variable vertex subclasses, the

Input vertex and Parameter vertex respectively represent input features and parameters of AI/ML

models—they are the provenance graph’s root vertices that do not have ancestry vertices. The

Derived vertex represent the intermediate computation results in ML models—they are the internal

vertices that have both ancestry and child vertices. The Output vertex represent the outputs in ML

models—they are leaf vertices in the provenance graph that do not have child vertices. Subclasses of

theOperator vertex differ in operator types (e.g., summation, multiplication, inverse, exponentiation

and scaling).

Table 2 shows the definitions and descriptions of the edge classes. Each edge 𝑒 ∈ 𝐸 belongs to

either the Variable-to-Operator (V2O) edge class or the Operator-to-Variable (O2V) edge class.
The provenance model allows only one O2V edge for each operator (i.e., each operator only has

one output), and allows multiple V2O edges for each variable (i.e., each variable can contribute to

multiple variables through an operator).

In Table 1 and 2, the Variable vertices and V2O edges are associated with properties contribution
and derivative that play pivotal roles in approximate subgraph searching. We formally define them

here as follows:

Definition 4.1 (contribution). A contribution, denoted by Con, of a Variable vertex 𝑣 or a V2O
edge 𝑒 is the difference between an output 𝑓 (®x) and the output when the vertex or edge is excluded

from the provenance graph:

Con(𝑒) = 𝑓 (®x) − 𝑓 (®x|𝐺 \ 𝑒) (1)

Con(𝑣) = 𝑓 (®x) − 𝑓 (®x|𝐺 \ 𝑣) (2)

Definition 4.2 (derivative). A derivative, denoted by Der, of a Variable vertex 𝑣 is the partial

derivative of an output 𝑓 (®x) of 𝑣 , and the derivative of a V2O edge 𝑒 is the partial derivative carried

by 𝑒 (chain rule):

Der(𝑒) = 𝜕

𝜕𝑣𝑒
[𝑓 (®x)] 𝜕𝑣𝑒

𝜕𝑣𝑠
(3)

where 𝑣𝑒 represents the end vertex of 𝑒 and 𝑣𝑠 represents the source vertex of 𝑒 .

Der(𝑣) =
∑︁

𝑒∈𝐸+ (𝑣)
Der(𝑒) (4)

where 𝐸+ (𝑣) represents the set of out edges of 𝑣 .

Based on the provenance graph, we can retrieve the computation dependencies of a vertex

through backward and forwarding tracing, which we formally define as follows:

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:9

(a)

Backward trace of

(b)

Forward trace from

(c)

Overlapping between
backward and forward trace

Fig. 5. Examples of backward trace, forward trace and provenance-enabled model inference.

Algorithm 1 Provenance-enabled Model Inference

1: functionModelInference(𝐺, 𝑠, 𝑣_set)

2: 𝐺 ′ ← ∅
3: 𝐺 (𝑠) ← backward trace from 𝑠

4: for 𝑣 ∈ 𝑣_set do
5: 𝐺 (𝑣) ← forward trace from 𝑣

6: 𝐺 ′ ← 𝐺 ′ ∪ (𝐺 (𝑠) ∩𝐺 (𝑣))
7: Change values of Input vertices in 𝑣_set

8: 𝑓 ′ (®x) ← compute the value of 𝑠 in 𝐺 ′

9: return 𝑓 ′ (®x)

Definition 4.3 (backward trace). A backward trace result of a vertex 𝑣 , denoted by 𝐺 (𝑣), is
a subgraph of 𝐺 that records all derivations of 𝑣 . Starting from 𝑣 , a backward trace traverses

the provenance graph by recursively calling 𝑣 .predecessors() until it reaches an Input vertex or
Parameter vertex.

Definition 4.4 (forward trace). A forward trace result of a vertex 𝑣 , denoted by𝐺 (𝑣), is a subgraph
of 𝐺 that 𝑣 contributes to. Starting from 𝑣 , a forward trace traverses the provenance graph by

recursively calling 𝑣 .successors() until it reaches a Output vertex.

Figure 5 (a) presents a backward trace example of an output 𝑓 (®x). Figure 5 (b) presents a forward
trace example of an input 𝑥 . In the figures, the solid rounds and red arrows represent the vertices

and edges in 𝐺 (𝑓 (®x)) and 𝐺 (𝑥).

4.2 Provenance-Enabled Model Inference
Based on the provenance model, we develop a provenance-enabled model inference approach to

accelerate XAI computation. The key intuition is that when the values of some input features are

changed by XAI tools, not all variables within the provenance graph necessarily need to be updated.

Figure 5 shows an example. Given an output 𝑓 (®x) to explain, an XAI tool generates a sample

®x′ where only one input feature 𝑥 differs from the original input instance ®x. By overlapping the

backward trace from a source Output vertex and the forward trace from the Input vertex 𝑥 , we
find that only the subgraph shown in Figure 5(c) should be updated, and the values of adjacent

vertices of the subgraph can be directly utilized.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:10 Zhang et al.

Algorithm 2 Fast Provenance-Enabled Model Inference

1: function FastModelInference(𝐺, 𝑠, 𝑣_set)

2: if 𝑠 is an Input vertex or Parameter vertex then
3: if 𝑠 is in 𝑣_set then
4: Change 𝑠 .value

5: return s.value
6: if 𝑠 .input_set ∩ 𝑣_set = ∅ then
7: return s.value
8: 𝑙 ← ∅
9: 𝑣opt ← 𝑠 .predecessors()
10: for each 𝑣 ∈ 𝑣opt .predecessors() do
11: if 𝑣 is not visited then
12: 𝑙 .append(FastModelInference(𝐺, 𝑣, 𝑣_set))

13: else
14: 𝑙 .append(𝑣 .value)

15: 𝑠 .value← 𝑣opt.compute(𝑙)

16: return 𝑠 .value

Our approach of provenance-enabled model inference is formalized in Algorithm 1. The inputs

of this algorithm include a provenance graph𝐺 , the Variable vertex 𝑠 (standing for “source”) for the
algorithm to infer (e.g., an output of an ML model 𝑓 (®x)), and 𝑣_set, a set of Input vertices whose
values have been changed. We first initiate an empty graph as the subgraph to update 𝐺 ′ (Line
2). Then, we perform a backward trace from 𝑠 (Line 3). Next, for each variable 𝑣 in 𝑣_set, we do a

forward trace from 𝑣 and compute an intersection between the backward trace subgraph 𝐺 (𝑠) and
the forward trace subgraph𝐺 (𝑣). The subgraph to update is unionized by the intersection subgraph

(Lines 4–6). Finally, we change the values of vertices in 𝑣_set (Line 7), compute and update all

variables in 𝐺 ′, including the output variable 𝑓 ′ (®x) as the provenance-enabled model inference

result (Line 8).

To optimize the performance of provenance-enabled model inference, we add “shortcuts” from a

Variable vertex to all Input vertices that contribute to the vertex as a property of Variable vertices:
input_set. For example, in Figure 5(a), we record that all five Input vertices contribute to theOutput
vertex of 𝑓 (®x) during the backward trace from 𝑓 (®x).

Taking advantage of the shortcuts, we design a fast provenance-enabled model inference al-

gorithm, shown in Algorithm 2. The algorithm is a backward depth-first search (DFS) algorithm

that recursively traverses each vertex in the provenance graph. We first define two termination

conditions of DFS traversing:

• Condition 1. The current vertex 𝑠 is either Input vertex or Parameter vertex that do not

have predecessors (Lines 2–5). If 𝑠 is in the 𝑣_𝑠𝑒𝑡 , we change its value (Line 4).

• Condition 2. No vertex in 𝑣_set is in 𝑠 .input_set (Lines 6–7). It indicates 𝑠 does not depend
on the input features whose values have been changed; therefore, we do not need to update

its value.

We initiate an empty list 𝑙 (Line 8) and get the Operator vertex 𝑣opt that is the predecessor of

𝑠 (Line 9). Then, we iteratively visit each predecessor of 𝑣opt, recursively run Algorithm 2 once a

predecessor is not visited, and append the returned values to 𝑙 (Lines 10–14). The operator vertex

updates 𝑠 .value based on 𝑙 (Line 15).

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:11

(a)

Dense graph

(b)

Many input features

Fig. 6. Examples of least contribution prune and least derivative prune.

5 Approximate Subgraph
Based on PXAI’s provenancemodel, provenance-enabledmodel inference improves the computation

efficiency of XAI tools by excluding irrelevant variables and computation dependencies.

However, the performance efficiency of provenance-enabled model inference is susceptible to the

density of the provenance graph and the number of input features whose values are changed.
For example, Figure 6(a) shows a dense provenance graph where each input vertex is connected to

all derived vertices. Figure 6(b) shows a provenance graph where the values of many input vertices

are updated. In each case, the overlap between the backward and forward trace is only slightly

smaller than the whole provenance graph, and the improvement over the original AI/ML model

inference is limited.

Inspired by prior approaches in approximate provenance [46, 58], we explore an approach that

excludes insignificant input features and computation dependencies to further improve PXAI’s

performance. We first formally define an approximate subgraph that is XAI-approximate. We also

introduce two heuristics-bsaed provenance-enabled approximate subgraph searching algorithms.

5.1 Definitions
The goal of approximate subgraph searching is to simultaneously minimize the size of the subgraph

and minimize the difference between approximate explanation E∗ (𝑓 (®x)) that is derived on the

approximate subgraph, and the original explanations E(𝑓 (®x)) that is derived on the original

provenance graph (i.e., XAI-approximate). The intuition behind XAI-approximate is that both the

outputs and derivatives on the approximate subgraph should be approximate to the original graph

within a neighborhood of an input instance.

The intuition is demonstrated in Figure 7. In this figure, the x-axis represents an input feature,

and the y-axis represents corresponding output of an ML model. The approximate curve in Figure 7

(a) performs the worst because it fails to approximate outputs or derivatives. In Figures 7 (b) and

(c), the approximate curves either fail to approximate the derivatives or the outputs. In the end,

the approximate curve in Figure 7 (d) is the best approximation concerning both outputs and

derivatives.

We formally define an approximate subgraph as follows:

Definition 5.1 (approximate subgraph). Given a provenance graph 𝐺 = (𝑉 , 𝐸), an instance of

input ®x, and the corresponding output 𝑓 (®x), the approximate subgraph 𝐺∗ (𝑓 (®x)) is a subgraph of

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:12 Zhang et al.

(a) (b) (c) (d)

Approximate curve Original curve

Fig. 7. Examples of 𝑓 (𝑥) approximation.

𝐺 (𝑓 (®x)) that minimizes the following objective:

𝐺∗ (𝑓 (®x)) = argmin

𝐺 ′ (𝑓 (®x)) ∈𝐺 (𝑓 (®x))
𝛼 𝐿1 (𝑓 ′ (®x), 𝑓 (®x),Π®x) +

𝛽 𝐿2 (▽𝑓 ′ (®x),▽𝑓 (®x),Π®x) +
𝛾 |𝐺 ′ (𝑓 (®x)) |

(5)

In Equation 5, the optimization objective consists of three terms: 𝐿1 and 𝐿2 represent the losses

that evaluate the approximation of outputs and derivatives, and |𝐺 ′ (𝑓 (®x)) | represents the size of
the subgraph. In addition, Π®x denotes the neighborhood of ®x, ▽𝑓 (®x) =

[
𝜕𝑓 (®x)
𝜕𝑥1

...
𝜕𝑓 (®x)
𝜕𝑥𝑛

]
, the

partial derivatives of the output of the input features (i.e., derivatives), and 𝛼 , 𝛽 , 𝛾 are user-specific

parameters that balance three terms. In our practical implementation, we typically configure the

three parameters to be equal, foregoing a detailed exploration of parameter optimization.

We approximate 𝐿1 and 𝐿2 by uniformly drawing random samples ®x′ ∽ Π®x around the input

instance ®x:
𝐿1 (𝑓 ′ (®x), 𝑓 (®x),Π®x) =

1

𝑁

∑︁
®x′∽Π®x

|𝑓 ′ (®x′) − 𝑓 (®x′) | (6)

𝐿2 (▽𝑓 ′ (®x),▽𝑓 (®x),Π®x) =
1

𝑁

∑︁
®x′∽Π®x

∥▽𝑓 ′ (®x′) − ▽𝑓 (®x′)∥2 (7)

where 𝑁 denotes the number of samples. In Equation 6, 𝐿1 is defined as the mean absolute difference

between the approximate outputs and the original outputs. In Equation 7, 𝐿2 is defined as the mean

Euclidean distance between the approximate derivatives and the original derivatives.

Taking advantage of 𝐿1 and 𝐿2, we evaluate to what extent an approximate subgraph is XAI-

approximate as follows:

Definition 5.2 ((𝜖, 𝜆, 𝑟)-approximate). An approximate subgraph𝐺∗ (𝑓 (®x)) and the approximate

explanation E∗ (𝑓 (®x)) derived on 𝐺∗ (𝑓 (®x)) are (𝜖, 𝜆, 𝑟)-approximate when the provenance-enabled

model inference results 𝑓 ∗ (®x′), ®x′ ∽ Π®x, satisfy 𝐿1 ≤ 𝜖 , 𝐿2 ≤ 𝜆 and ∥®x′ − ®x∥2 ≤ 𝑟 .

Additionally, we define a special case of (𝜖, 𝜆, 𝑟)-approximate when the radius 𝑟 of the neighbor-

hood Π®x is 0 (i.e., in Equation 6 and 7, 𝑁 = 1, 𝐿1 and 𝐿2 only depend on ®x):

Definition 5.3 ((𝜖, 𝜆)-approximate). An approximate subgraph 𝐺∗ (𝑓 (®x)) and the approximate

explanation E∗ (𝑓 (®x)) derived on 𝐺∗ (𝑓 (®x)) are (𝜖, 𝜆)-approximate when the provenance-enabled

model inference result 𝑓 ∗ (®x) satisfies 𝐿1 ≤ 𝜖 and 𝐿2 ≤ 𝜆.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:13

(a) (b)

Least contribution prune Least derivative prune

Fig. 8. Examples of the least contribution prune and the least derivative prune.

5.2 Provenance-Enabled Approximate Subgraph Searching
Although an approximate subgraph provides a more efficient approach for provenance-enabled XAI,

searching for a globally optimal solution to the problem defined in Equation 5 is intractable. Based on

PXAI’s provenance model, we introduce two provenance-enabled approximate subgraph searching

algorithms: provenance pruning, which is model-agnostic; and input subset searching, which
is designed for probabilistic graphical models.

5.2.1 Provenance Pruning. Provenance pruning takes advantage of two properties of vertices and

edges in PXAI’s provenance model: contribution and derivative. The intuition behind this algorithm

is that we heuristically prune the least “important” edges, therefore, minimizing the impact of

pruning.

Figure 8 presents two strategies of provenance pruning: the least contribution prune and the

least derivative prune. In Figure 8(a), the leftmost edge, connecting from a Derived vertex 𝑣 to the

Output vertex 𝑓 (®x), has the least contribution, which indicates that pruning this edge affects the

output the least. In Figure 8(b), the rightmost edge, connecting from a Input vertex 𝑥 , has the least
derivative, which indicates that pruning this edge affects the derivative of the output of 𝑥 the least.

To simultaneously minimize the impact on the outputs and derivations, we design a mixed strategy

of the least contribution prune and the least derivative prune based on a new metric, the importance
of edges:

Definition 5.4 (importance). The importance of an edge, denoted Imp(𝑒), is defined as:

Imp(𝑒) = 𝛼 |Con(𝑒) | + 𝛽 |Der(𝑒) | (8)

where Con(𝑒) is defined in Equation 1, Der(𝑒) is defined in Equation 3, and 𝛼 and 𝛽 are user-specific

weighting parameters.

We present the provenance pruning approach in Algorithm 3. The inputs of this algorithm

include 𝐺 (𝑠), the backward tracing result from a source vertex 𝑠 , 𝜖 , 𝜆, 𝑟 , that are three parameters

defined in Definition 5.2 and 5.3, and 𝑘 , a user-specific parameter that determines how many edges

to prune in one iteration. In each iteration, we first update the contributions and derivatives of edges
in 𝐺∗ (𝑠) (Line 5). Next, we compute a list 𝑙 of importances (Equation 8) of𝑚 edges (Line 6). Then,

we get the top-𝑘 edges from 𝑙 in ascending order (i.e., the least important 𝑘 edges), and prune the

edges (Lines 8–9). In the end, we check whether the pruned subgraph satisfies (𝜖, 𝜆, 𝑟)-approximate.

If so, we continue pruning; otherwise, we stop and return the approximate subgraph from the

previous iteration (Lines 10–13).

5.2.2 Input Subset Searching. Input subset searching reduces the problem defined in Equation 5

to a problem that searches for the optimal subset of Input vertices. Instead of pruning an exist-

ing provenance graph (e.g., provenance pruning in Section 5.2.1), input subset searching builds

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:14 Zhang et al.

Algorithm 3 Provenance Pruning

1: function ProvenancePruning(𝐺 (𝑠), 𝜖, 𝜆, 𝑟, 𝑘)
2: 𝐺∗ (𝑠) ← 𝐺 (𝑠)
3: while 𝑡𝑟𝑢𝑒 do
4: 𝑉 , 𝐸 ← 𝐺∗ (𝑠)
5: ∀𝑒 ∈ 𝐸, update Con(𝑒) and Der(𝑒)
6: 𝑙 ← [Imp(𝑒1), ..., Imp(𝑒𝑚)]
7: 𝐺 ′ ← 𝐺∗ (𝑠)
8: for each 𝑒 ∈ top-𝑘 (𝑙, 𝑘 ,order=ascending) do
9: 𝐺 ′ ← 𝐺 ′ \ 𝑒
10: if 𝐺 ′ satisfies (𝜖, 𝜆, 𝑟)-approximate then
11: 𝐺∗ (𝑠) ← 𝐺 ′

12: else
13: Break

14: return 𝐺∗ (𝑠)

Markov Network

Known node

Unknown node

Input vertex

Derived vertex

Output vertex

Fig. 9. An example of the PXAI provenance graph of a probabilistic graphical model.

approximate subgraphs based on the input subsets through backward trace and forward trace

similar to Algorithms 1 and 2. Although it is relatively easier than searching the optimal subgraphs,

enumerating all possible subsets of Input vertices is still intractable. To solve this problem, we

design a heuristic searching algorithm for probabilistic graphical models that takes advantage of

the graphical structures.

The intuition behind this algorithm is that, in a probabilistic graphical model, the probability

inference result of an unknown node is mostly impacted by its adjacent neighbors (e.g., Markov

blanket [49] and local Markov property [20]). For instance, Figure 9 shows a factorized Markov

Network (in the bottom plane) and a simplified provenance graph (in the upper plane) that records

the variables and computation dependencies in the process of loopy belief propagation. In the

provenance graph, Input vertices correspond to the known nodes, Derived vertices correspond to

the factor nodes, and the Output vertex corresponds to the unknown node in this Markov Network.

In the Markov Network, compared to other known nodes (dotted yellow circles), the adjacent

known nodes (solid yellow circles) directly contribute to the unknown node (solid green circle).

Therefore, the corresponding Input vertices should be taken into account by the input subset

searching algorithm earlier.

We present the input subset searching approach in Algorithm 4. We use a priority queue to

heuristically search for the subset of Input vertices that lead to the smallest loss in Equation 5.

We initialize the approximate subgraph 𝐺∗ (𝑠) (Line 2), the optimal loss L∗ (Line 3), and a set of

PGM nodesN_set (Lines 4–5). Next, we initialize a priority queue 𝑝𝑞 of 3-tuples, and in each tuple,

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:15

Algorithm 4 Input Subset Searching

1: function InputSubsetSearching(𝐺 (𝑠))
2: 𝐺∗ (𝑠) ← ∅
3: L∗ ←∞
4: N𝑠 ← the PGM node that corresponds to 𝑠

5: N_set← {N𝑠 }
6: 𝑝𝑞 ← ∅
7: 𝑝𝑞.push((N_set, ∅,∞))
8: while 𝑝𝑞 is not empty do
9: N_set,𝐺,L ← 𝑝𝑞.pop()

10: if L < L∗ then
11: 𝐺∗ (𝑠) ← 𝐺

12: L∗ ← L
13: for each N𝑖 in N_set’s adjacent known nodes do
14: N_set

′ ← N_set.insert(N𝑖)
15: if N_set

′
has not been visited then

16: 𝐺 ′ ← build subgraph of 𝐺 (𝑠) based on N_set
′

17: L′ ← compute loss of 𝐺 ′ using Equation 5

18: 𝑝𝑞.push((N_set
′
, 𝐺 ′, L′))

19: return 𝐺∗ (𝑠)

Table 3. A list of PXAI’s Provenance Maintenance APIs.

API Description

addVariable(ID,V,T) Add a Variable vertex to the provenance graph. V stands for value of

this variable. T stands for the vertex subclass (e.g., Input)
addOperator(ID,T,P) Add an Operator vertex to the provenance graph. T stands for the

vertex subclass (e.g., Sum), P stands for a list of parameters of this

operator (e.g., the base number of Exp operator)

addEdge(S,E) Add an edge that connecting two vertices. S and E stand for the IDs
of the source vertex and the end vertex.

the elements represent N_set, provenance subgraph and loss (Lines 6–7). While 𝑝𝑞 is not empty,

we pop the 3-tuple that has the smallest loss L (Lines 8–9), then check whether it is the current

optimal solution (Lines 11–12). Next, for each adjacent known node N𝑖 of N_set, we extend N_set

by incorporating N𝑖 , and build a new set N_set
′
(Lines 13–14). If it has not been visited, we build

subgraph 𝐺 ′ of 𝐺 (𝑠) based on a subset of Input vertices that correspond to PGM known nodes in

N_set
′
. Based on 𝐺 ′, we compute the corresponding loss L′ using Equation 5, and finally push

them to 𝑝𝑞 (Lines 15–18). To avoid enumerating all subsets, we add an early termination condition

that 𝑝𝑞’s size can not surpass a certain threshold.

6 Implementation
PXAI is programmed in C++. We implemented classes and subclasses of vertices and edges that are

defined in Table 1 and 2. We implemented a class of provenance graphs, as well as the provenance

tracers on top of the Boost Graph library [2]. PXAI provides a list of provenance maintenance

APIs, which are shown in Table 3, for AI developers to call in their model inference codes (e.g.,

belief propagation of probabilistic graphical models and the forward pass of neural networks).

Each vertex and edge is unique and is identified by the ID. PXAI allows developers to define new

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:16 Zhang et al.

hasImg(ID,“cars”,“on”,“road”)

hasImg(ID,“planes”,“are”,“parked”)

hasImg(ID,“white”,“color”,“plane”)

What is the building in the
background?

Input Question: hasQ(ID,“building”,“is”,“what”)

hasQ(ID,“background”,“building”,“what”)

hasImg(ID,“horse”,“in”,“field”)

hasImg(ID,“horse”,“color”,“crown”)

Input Images:

(a)

(b)

sim(“terminal”,”planes”)

Word Similarities:

sim(“building”,”in”)

word(ID,“terminal”)
Words:

word(ID,“stadium”)

word(ID,“barn”)

Model inference with
PXAI provenance

ans(ID,“terminal”)

Answers:

ans(ID,“stadium”)

ans(ID,“barn”)

ans(ID,“church”)
word(ID,“church”)

hasImg(ID,“cross”,“on”,“building”)

sim(“church”,”cross”)

sim(“barn”,”horse”)

Fig. 10. Demonstration of two VQA test cases “terminal” (a) and “church” (b)

r1 w1: hasImgAns(V,Z,X1,R1,Y1) <= word(V,Z) ∧ hasImg(V,X1,R1,Y1) ∧
sim(Z,X1) ∧ sim(Z,Y1).

r2 w2: candidate(V,Z) <= word(V,Z).
r3 w3: candidate(V,Z) <= word(V,Z) ∧ hasQ(V,X,R,Y) ∧

hasImgAns(V,Z,X1,R1,Y1) ∧ sim(R,R1) ∧ sim(Y,Y1) ∧ sim(X,X1).
r4 w4: ans(V,Z) <= candidate(V,Z) ∧ hasQ(V,X,R,"WHAT") ∧

hasImg(V,Z1,R1,X1) ∧ sim(Z,Z1) ∧	 sim(R,R1) ∧ sim(X,X1).

Fig. 11. The VQA program from PSL.

subclasses of Operator vertices so that the developers control the granularity of the provenance

graph. For example, developers can use a Convolution operator, which is coarser, or decompose it

into a series of Mul and a Sum operator, which are finer.

7 Evaluation
We assess PXAI’s effectiveness across diverse ML models through targeted case studies:

• Visual question answering [4] with a PGM (Section 7.1)

• Credit score classification [30] with an MLP (Section 7.3.1)

demonstrates PXAI’s capability to produce comprehensible approximate explanations that are

consistent with the original explanation, and

• Text classification [17] with a PGM (Section 7.2)

• Credit score classification with an MLP (Section 7.3.2 and 7.3.3)

• ML deletion [22] with 𝑘-means clustering (Section 7.4)

Our evaluation offer a thorough insight into PXAI, illustrating its utility as an optimization toolkit

in ML workflows that require flexible and efficient model updates. In short, our evaluation results

demonstrate that PXAI significantly improves the computational efficiency of XAI by up to five

orders of magnitude, at an acceptable trade-off involving moderately increased space and time

complexity in provenance computations.

The experiments in Section 7.1 and 7.2 were conducted on a Dell PowerEdge R730 server with

dual Intel Xeon E5-2640 CPUs and 64GB memory using Ubuntu 18.04.6 LTS. The experiments in

Sections 7.3 and 7.4 were conducted in Alibaba Cloud, utilizing an AliServer equipped with 128

Intel(R) Xeon(R) Platinum 8369B CPUs and 2 TB of memory running CentOS.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:17

(a) (b) (c)

Fig. 12. Ranks of the top-8 most influential Input vertices of the Output vertices: ans("terminal") (a),
ans("barn") (b) and ans("church") (c).

7.1 Case Study 1: VisualQuestion Answering (Probabilistic Graphical Model)
Visual question answering (VQA) [4] is an application of a probabilistic graphical model provided

by PSL [6]. Figure 10 demonstrates an overview of two VQA test cases. In this application, we

are given known nodes (i.e., the input features in PGM) from model-modality machine learning

systems:

(1) hasImg captures image information and are extracted by computer vision models, such as

hasImg(ID,"planes","are","parked") of “terminal” in Figure 10 (a).

(2) hasQ contains keywords from a question and are extracted by NLP models, such as hasQ(ID,
"building","is","what") based on a question “What is the building in the background?”

(3) sim estimates the similarities between words and are collected from language models.

(4) word represents the candidate answers with prior confidence scores.

Combining all inputs, Aditya et al. [4] provide a PSL program in Figure 11 that builds a Markov

Network from four weighted first-order logic formulas. In this program, r1 extends more hasImg by
replacing synonyms of keywords of hasImg. Formula r2 indicates that every word can be a possible

candidate for the final answer. Formula r3 provides another way of determining a candidate answer

which is derived from similarities of keywords of hasImgAns and hasQ. Finally, r4 combines all

information from images, questions and similarities, then generates the unknown node ans, which
represents the output in PGM.

7.1.1 Explaining Correct Output. In evaluating the "terminal" test case depicted in Figure 10 (a),

the model accurately predicts ans(ID,"terminal"). To explain this output, we applied ICE on

PXAI’s provenance and its approximate subgraphs to evaluate the influences of Input vertices on
the Output vertex ans(ID,"terminal"). In Figure 12 (a), the x-axis represents the number of

Input vertices (i.e., the scale of provenance graphs), and the y-axis represents the rank of the most

influential Input vertices. It compares the original explanation (the rightmost of the x-axis) with

the approximate explanations, derived from the provenance graph and its (0.01,0.01)-approximate

subgraphs. It is observed that with approximate subgraphs encompassing more than 21 Input
vertices, the top-ranked vertices maintain a similar order to those derived from the original graph.

Among the top-8, sim("terminal","planes") is the most influential Input vertex, which is

reasonable because planes are highly correlated with terminals. The most influential hasImg tuple is
hasImg(ID,"planes","are","parked"), which provides critical evidence that planes are parked

around the building. Finally, word(ID,"terminal") is also an important Input vertex for the

answer ans(ID,"terminal") as it includes the candidate “terminal”.

7.1.2 Debugging Undesired Output. PXAI’s debugging capability was tested with a misclassified

image of a "church" in Figure 10 (b), where the model wrongly inferred "barn" as the building in

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:18 Zhang et al.

100 200 300 400 500 600 700 800 900 1k
Number of inputs

(a)

0

1

2

3

4

M
od

el
 in

fe
re

nc
e

tim
e

(s
)

W/o provenance
W/ provenance
W/ coarser provenance

100 200 300 400 500 600 700 800 900 1k
0

10

20

In
-m

em
or

y
st

or
ag

e
(M

B) Provenance
Coarser provenance

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0 1k

Number of inputs
(b)

0

5

Ba
ck

wa
rd

 tr
ac

e
tim

e
(m

s)

100 200 300 400 500 600 700 800 900 1k
Number of inputs

 (c)

0.001
0.01

0.1
1

10
100

1000

Ru
nn

in
g

tim
e

of
 IC

E
(s

)

ICE on Alchemy (LBP only)
ICE on PXAI PROV graph
ICE on approx subgraph (subset search)
ICE on approx subgraph (prune)

10
0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0 1k

Number of inputs
 (d)

0.01

0.1

1

10

Ru
nn

in
g

tim
e

of

 a
pp

ro
x

se
ar

ch
 (s

)

Subset search
Prune

Fig. 13. PXAI performance of provenance maintenance (a), query and storage (b), XAI (c) and approximate
subgraph searching (d) when applied to PGM.

Table 4. Two approximate counterfactual explanations to ans(ID,"church").

Input Expl A Expl B
sim("church","cross") 0.097→ 0.497 0.097→ 0.249

sim("barn","cross") 0.301→ 0.253 0.301→ 0

sim("building","in") 0.135→ 0.147 0.135→ 0.152

sim("is","on") 0.144→ 0.148 0.144→ 0.168

the background. To investigate the misprediction, we applied ICE to both the incorrect output

ans(ID,"barn") and the correct ans(ID,"church") using PXAI on the provenance graph and its

(0.01,0.01)-approximate subgraphs. The results are illustrated in Figure 12 (b) and (c), where we

show that once the number of Input vertices exceeds 24, the rankings of the approximate subgraphs

are consistent with the original provenance graph (the rightmost of the x-axis).

We identified that sim("church","cross") is the most influential Input vertex of ans(ID,
"church") and sim("barn","cross") is also among the top-8 for ans(ID,"barn"). In the word-

similarity data set, we notice that the word “barn” has a higher similarity with “cross” (0.301)

compared to the one between “church” and “cross” (0.097), which is counter-intuitive and suspicious.

Next, we ran counterfactual explanations on approximate subgraphs for intuition on how to debug

this output. Table 4 shows two approximate counterfactual explanations (Expl A and B) in which

values of only four Input vertices aremodified. These counterfactual explanations demonstrated how

altering the probability of sim("church","cross") could effectively shift the model’s prediction

toward the correct answer. For example, increasing the similarity score of sim("church","cross")
by 0.4 in one counterfactual scenario (Expl A) significantly improved the likelihood of the desired

outcome.

7.2 Case Study 2: Text Classification (Probabilistic Graphical Model)
We first evaluate PXAI’s performance using the motivation case study text classification [17]

presented in Section 1. The Alchemy [1] provides a MLN program that consists of 5365 weighted

first-order logic formulas and a testing data set that consists of 50617 HasWord input features and

2153 Links input features. We systematically sampled subsets of this dataset in increments of 100,

ranging from 100 to 1000 instances, adhering to a fixed 3:7 proportion of Links to HasWord inputs

to ensure diversity in feature representation.

7.2.1 Provenance Maintenance and Query. First, we measure the overhead of provenance mainte-

nance. We compare the running time of model inference (i.e., loopy belief propagation) without

provenance and with provenance. The evaluation results are shown in Figure 13 (a). We observe that

the running times increase linearly as the number of input features increases. Provenance mainte-

nance executes in a constant time and does not affect the asymptotic complexity and scalability. In

addition, we note that the performance of provenance maintenance can be optimized by adopting

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:19

2 4 6 8 10
Number of layers

(a)

0

50

100

M
od

el
 in

fe
re

nc
e

tim
e

(m
s)

W/o provenance
W/ provenance

2 4 6 8 10
Number of layers

(a)

20

40

Ba
ck

wa
rd

tra

ce
 ti

m
e

(m
s)

2 4 6 8 10
0

50

100

150

In
-m

em
or

y
 st

or
ag

e
(M

B)

Model
Parameter data
Derivative data
Graph data

2 4 6 8 10
Number of layers

(b)

3M
6M
9M

Nu
m

be
r o

f
pa

ra
m

et
er

s
2 4 6 8 10

Number of layers
 (c)

0

2

4

6

8

Ru
nn

in
g

tim
e

of

IC
E

(s
)

ICE on MLP models
ICE on original PROV graph
ICE on approx subgraph

2 4 6 8 10
Number of layers

 (d)

0.0

2.5

5.0

7.5

10.0

12.5

Ru
nn

in
g

tim
e

of

 a
pp

ro
x

se
ar

ch
 (s

)

Prune

Fig. 14. PXAI performance of provenance maintenance and query (a), storage (b), XAI (c) and approximate
subgraph searching (d) when applied to MLP.

coarser provenance where the Sum andMul operators are replaced by coarser operators, such as

sum of multiplications (i.e., the factor-to-variable message passing in belief propagation [52]).

In analyzing PXAI’s in-memory storage demands and the provenance query overhead, Figure 13

(b) depicts a linear increase in storage requirements for both the detailed and coarser provenance

graphs corresponding to the rise in input features. Subsequently, we calculated the average runtime

for backward tracing from all Output vertices across different input feature counts. The outcome,

represented by the orange and brown curves, also demonstrates a linear escalation with growing

input features. Notably, the additional time incurred by the provenance query is minimal (measured

in milliseconds), significantly less than the time taken for model inference, owing to PXAI’s ability

to omit irrelevant variables and calculations.

7.2.2 XAI Acceleration. To evaluation PXAI’s ability to accelerate XAI, we compute the average

running time of ICE computation (i.e., computing the influences of all input features for an out-

put), approximate subgraph searching and ICE on approximate subgraphs of all Output vertices.
Figure 13 (c) compares the running time of ICE on Alchemy as a baseline (blue curve), PXAI’s

provenance graph (orange bars), approximate subgraphs from input subset searching (purple bars),

and approximate subgraphs from provenance pruning (green bars). Compared to the baseline, PXAI

imposes significantly lower overheads by approximately 5 orders of magnitude, and the computation

is more efficient on the the approximate subgraphs. Figure 13 (d) shows the average running time

of input subset searching (purple bars) and pruning (green bars). All approximate subgraphs satisfy

(0.01,0.01)-approximate. Pruning is more time-consuming due to the expensive computation of

contributions of the edges. However, as shown in Figure 13 (d), pruning creates smaller approximate

subgraphs for large sample sizes.

7.3 Case Study 3: Credit Score Classification (Multi-Layer Perceptron)
We next apply PXAI to a Multi-Layer Perceptron (MLP) using a case study: credit score classification.

This case study, drawn from a Kaggle competition [30], targets the prediction of creditworthiness

based on financial attributes. After preprocessing, which includes data cleaning, one-hot encoding,

and data scaling, the final dataset comprises 46 input features representing various financial

indicators, such as “Monthly In-hand Salary” and “Number of Loans”. The task is to classify

individuals into one of three credit score categories: “Good”, “Standard”, and “Poor”. In the upcoming

sections, we conduct a comprehensive evaluation of PXAI. The assessment includes qualitative

analysis (Section 7.3.1) of approximate explanations and quantitative analysis (Sections 7.3.2 and

7.3.3) of PXAI runtime performance.

7.3.1 Explaining Output of Poor Credit Score. Credit score classification has been managed by

automated decision-making systems, specifically ML models. Recipients of these systems may

occasionally require explanations for the decisions made. For example, Figure 15 presents a snapshot

of the financial attributes of an individual who has been automatically categorized as having a

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:20 Zhang et al.

� !��� �	���

�$��� ����
������!�

����$�������!���� �

�� �����	���

�!��������	���

�� ��$�������������$

����������#����� ���

���� �"�

��� �"�

� !��� �	���

�$��� ����
������!�

����$�������!���� �

�� ��$�������������$

�!�����������������!� �

�!��������	���

�����#��� ���#����� ���

Monthly In-hand
Salary

Number
of Loan

Number of Bank
Accounts

Delay from
Due Date

Payment of Min
Amount

Student
Loan

Mortgage
Loan

Model
Output

1480.6 9 7 37 True True True Poor

(a) (b)

Fig. 15. An example of credit score classification explanations.

"Poor" credit score by an MLP model. And we aim to address the question: “Why the credit score is

not good?” by utilizing ICE with PXAI.

Figure 15 (a) and (b) show the top-6 influential input features, assessed via normalized ICEs, in

relation to the "Good" credit score output. This evaluation is conducted using both the original

provenance graph and a (0.1, 0.1)-approximate subgraph where 50% of edges have been pruned.

Negative influences are represented by magenta bars, whereas positive influences are illustrated

by green bars. It is demonstrated that five out of six input features (denoted in black text) remain

included in the approximate explanation, and the top-3 input features do not change in the approx-

imate explanation. The findings highlight that PXAI’s approximate provenance method is capable

of generating reasonable explanations.

7.3.2 Provenance Maintenance and Query. To evaluate the scalability of PXAI when applied to

MLP, we conducted the training and subsequent evaluation of the PXAI on a series of MLP models

with varying depths. Specifically, MLPs with 2, 4, 6, 8, and 10 layers were analyzed, each consisting

of 1024 neurons per layer. First, we evaluate the running time of the MLP model with and without

the inclusion of PXAI’s provenance maintenance. The performance are summarized in Figure 14

(a) where the provenance maintenance introduces approximately 40%+ overhead. Furthermore,

the execution time for backward tracing from the Output vertices back to Input vertices offers
evidence of PXAI’s scalability.

Next, we investigate the space complexity of PXAI, in comparison with the original MLP models,

by measuring the in-memory storage requirements for provenance data as more features are

processed through the graph. Figure 14 (b) shows the decomposed provenance storage, and the

scaling of model parameters. Specifically, the provenance consists of model parameter data, which

is nearly equivalent to the model itself, derivative data, and graph data, including vertices and

edges. The results indicate that PXAI introduces a linear storage overhead.

7.3.3 XAI Acceleration. To evaluate PXAI’s ability of XAI acceleration, in this subsection, we

compute the average time of ICE computations, identify and utilize approximate subgraphs, and

execute ICE on these subgraphs. The performance comparison is visualized in Figure 14 (c) and

reveals the time efficiency of PXAI’s approximate methods compared to a baseline of ICE on the

original, non-approximated MLP structure. As depicted in Figure 14 (c), the execution time on the

original provenance graph (orange bars) aligns closely with the established baseline (blue curve),

which is reasonable given the minimal presence of irrelevant computations in MLP inference (See

Figure 6). Notably, the employment of approximate subgraphs facilitates at most 4x acceleration,

notwithstanding a one-time overhead attributed to the approximate subgraphs searching, which is

presented in Figure 14 (d). In this figure, the searching time grows linearly as the number of layers

increases.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:21

2k 4k 6k 8k 10k
Number of points

(a)

0

50

100

150

200

250

K-
m

ea
ns

 ru
nn

in
g

tim
e

(s
) W/o provenance

W/ provenance

10 20 50 100
Number of clusters

(d)

0

50

100

150

K-
m

ea
ns

 ru
nn

in
g

tim
e

(s
) W/o provenance

W/ provenance

2k 4k 6k 8k 10k
Number of points

 (c)

0

50

100

150

200

250

Ru
nn

in
g

tim
e

of

k-
m

ea
ns

 d
el

et
io

n
(s

) Baseline
PXAI

10 20 50 100
Number of clusters

 (f)

0

25

50

75

100

125

150

Ru
nn

in
g

tim
e

of

k-
m

ea
ns

 d
el

et
io

n
(s

) Baseline
PXAI

2k 4k 6k 8k 10k
Number of points

 (b)

0

50

100

150

200

In
-m

em
or

y
st

or
ag

e
(M

B)

10 20 50 100
Number of clusters

 (e)

0

20

40

60

80

100

In
-m

em
or

y
st

or
ag

e
(M

B)

Fig. 16. PXAI performance of provenance maintenance (a and c), query (b and e), and ML deletion (c and f)
when applied to 𝑘-means clustering.

Algorithm 5 𝑘-means Deletion on Provenance Graph

1: function K-MeansDeletion(𝐺 , 𝑛)

2: 𝐶𝑖 ← ∅ ⊲ The set of clusters to update

3: for 𝑖 ← 1 to 𝐺.iteration do
4: 𝑣_𝑝 ← 𝐺.getVertex(𝑛, 𝑖) ⊲ The vertex of point 𝑛

5: 𝑣_𝑐 ← 𝑣_𝑝.successors() ⊲ The centroid of point 𝑛

6: Remove the edge from 𝑣_𝑝 to 𝑣_𝑐 ⊲ Delete the point

7: 𝐶𝑖 .insert(𝑣_𝑐)
8: for 𝑣_𝑐 ∈ 𝐶𝐼 do
9: Update 𝑣_𝑐 .values through backward trace

10: for 𝑣_𝑑 ∈ 𝑣_𝑐.successors() do
11: Update 𝑣_𝑑 .values[𝑣_𝑐 .ID]
12: if The nearest neighbor changes then
13: Add/remove the edges

14: Add corresponding centroid vertices to 𝐶𝑖+1

15: if converged then return
16: if ! converged then
17: Continue to run the original 𝑘-means algorithm

7.4 Case Study 4: ML Deletion (k-Means Clustering)
Continuing our evaluation of PXAI, we delve into ML deletion with a focus on 𝑘-means cluster-

ing [22]. ML deletion seeks to efficiently updating a trained model subsequent to the removal

of data points from the training dataset. The provenance-based approach promises performance

enhancements in this context without any approximation of ML deletion. The provenance-enabled 𝑘-
means deletion algorithm, outlined in Algorithm 5, is designed to minimize irrelevant computations

. The algorithm works by identifying the data point’s associated centroid and the distances to the

centroids, then updating the centroid’s value, distances, and its dependent data points’ assignments,

through provenance tracing.

To conduct a thorough evaluation, we leveraged the widely recognized MNIST Database of

Handwritten Digits [14]—a benchmark challenge in the field of machine learning. Our experimental

analysis proceeded in a twofold manner. First, we quantified the scalability of provenance mainte-

nance, query performance, and 𝑘-means deletion as a function of the point number (the number of

clusters is set 10). The results are presented in Figure 16 (a)-(c). Next, we extended our analysis to

examine the effects of cluster numbers on the same performance metrics (the number of points is

set 2000). The results are presented in Figure 16 (d)-(f).

To assess the overhead costs associated with provenance maintenance, we track and compare the

execution times of 𝑘-means clustering with and without provenance. In Figure 16 (a) and (d), PXAI

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:22 Zhang et al.

Table 5. Applicability of PXAI to ML models (# stands for unessential and not suitable,G# stands for essential
but not suitable, H# stands for unessential but suitable, stands for essential and suitable).

ML

models

Supervised

learning

Unsupervised

learning

Reinforcement

learning

Linear

Tree-

based
Naive

Bayesian

PGM Clustering

Model-

based

Model-

free

Linear

regression

Logistic

regression

Neural

network

Decision

tree

Random

forest

Bayesian

network

Markov

network
𝑘-means GMM

Deep

Q-learning
Q-learning

PXAI

applicable
H# H# # G# # G# #

Table 6. Applicability of PXAI to XAI tools (# stands for not applicable and stands for applicable).

XAI

Post-hoc Ante-hoc

Feature attribution Counterfactual explanation Surrogate-based Henricks

et al. [27]LRP [5] ICE [23] SHAP [36] PDA [62] Wachter et al. [57] Tolomei et al. [55] LIME [47] Anchor [48]

PXAI applicable # # #

incurs less than 15% overheads. In addition, Figure 16 (b) and (e) show a linearly growth of PXAI’s

memory utilization. We did not measure provenance query because Algorithm 5 are performed on

the whole provenance graph.

Our primary goal with this case study, as demonstrated in [22] (c) and (f), is to evaluate the effec-

tiveness of a provenance-aware 𝑘-means deletion algorithm (orange bars) compared to retraining

the 𝑘-means model from scratch after data point removal (blue curves). The algorithm’s efficiency

stems from its ability to target only the computation paths affected by the deletion, thereby reducing

the overall calculation load. In Figure 16 (c), the running times of both the baseline and PXAI grow

linearly. PXAI enables more than 5x accelerations of 𝑘-means deletion. In Figure 16 (f), the execution

time of PXAI initially increases and then decreases, in contrast to the rapidly escalating running

time of the baseline. Notably, at a cluster count of 100, PXAI achieves a substantial 35x acceleration

compared to the baseline. This efficiency gain is attributed to the fact that as the number of clusters

grows, a larger proportion of clusters and data points become irrelevant to the ML deletion process

and are consequently bypassed via provenance tracking.

8 Discussion
Applicability to other ML models Beyond the case studies presented in Section 7, we now

consider the applicability of PXAI to other ML models. Table 5 outlines the mainstream ML

landscape. We consider the interpretability of ML models and assess PXAI’s suitability in terms

of intermediate computation. We find that PXAI is not essential for inherently interpretable ML

models, including (but not limited to) linear regression, logistic regression, and decision trees,

because their decision-making processes are already transparent. We also find that PXAI is not

suitable for ML models that do not generate intermediate computational results during inference,

such as Gaussian Mixture Models (GMMs) and Q-learning algorithms.

We discuss PXAI’s applicability in Table 6, encompassing categories of various XAI tools. PXAI

is applicable to all XAI tools that follow a sample-then-inference procedure, such as ICE [23] of

feature attribution and counterfactual explanations [57]. Some XAI tools, such as LRP [5], are

computationally efficient; however, they are model-specific (e.g., for neural networks). Ante-hoc

XAI tools, such as Henricks et al. [27], are designed as inherently interpretable ML models and do

not require PXAI.

Scope of Novelty Our goal with PXAI is not to create a novel XAI algorithm but rather to

improve the computational efficiency of existing XAI algorithms. For example, the objective

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:23

of XAI-approximate is not to enhance the explainability of AI/ML models, but rather to reduce

computational overhead while maintaining minimal deviations from the original explanations.

Developer Effort PXAI currently requires an ML developer to instrument their source code with

the appropriate API calls in Table 3 to maintain adequate provenance collection. Although existing

provenance tools can track data derivation in source code, such as noWorkflow [43] or in binary

executables, scuh as BEEP [33] and OmegaLog [26], we leave automated provenance tracking in

ML applications as future work.

Scalability Challenges In recent years, neural networks have scaled to encompass over one billion

parameters, as evidenced by the development of large language models (LLMs). When applied

to large-scale neural networks with complicated architectures, despite the linear computational

overhead associated with provenance maintenance as demonstrated in Section 7, PXAI encounters

the following challenges.

(1) Storage overhead: Currently, PXAI supports only in-memory provenance, which may

become exceedingly large and unsuitable for large-scale neural networks. However, there

have been extensive study on provenance storage and optimizations in database, such as

Chapman et al. [11], Hu et al. [29] and Ding et al. [16], providing a comprehensive view of

potential solutions to this challenge.

(2) Parallel acceleration: The inference of large-scale neural networks often relies on par-

allel acceleration using GPUs. At present, PXAI does not implement parallel acceleration,

including batch inference, which presents a limitation. Future work could incorporate parallel

acceleration techniques to enhance PXAI’s scalability.

9 Related Work
Reuse of intermediate computation results Clipper [12] caches model inference results to

improve the throughput of training. Pretzel [34] converts machine learning pipelines into “model

plans”, which reduces the model inference latency by reusing the parameters and computations

between similar model plans. These approaches do not implement provenance or lineage and are

highly coupled with specific ML systems (e.g., ML.Net, Tensorflow and Caffe) that generate machine

learning pipelines.

Some prior work has implemented data provenance/lineage for data reuse. nbsafety [38]

traces the lineage of intermediate states of the “cells” in Jupyter Notebook to detect and avoid

unsafe interactions from the notebook users. KeystoneML [54] and HELIX [60] optimize iterative

executions ofmachine learningworkflows, including preprocessing, model training, model inference

and post-processing, by reusing computation results from previous iterations. These approaches

are coarse-grained; therefore, they cannot trace fine-grained (i.e., pipeline-level) computation

dependencies required by XAI tools. LIMA [42] builds a fine-grained lineage inside ML systems,

but its performance is susceptible to the density of lineage. In contrast, PXAI decouples XAI tools

from AI/ML systems/models, implements a fine-grained provenance model, and further accelerates

XAI by searching approximate subgraphs.

AI/ML security and interpretation Data provenance improves AI/ML security by tracing the

data in model training. For example, Song and Vitaly [53] design a black-box auditing method that

determines whether a user’s data are used to train a text-generative model. Baracaldo et al. [7]

uses data provenance to track the origin and transformation of data points in the training data

set to filter “poisonous” data. PrIU [59] tracks the provenance of the data for incremental training

of logistic regression and linear regression models so that the training error can be identified.

However, these approaches focus on model training instead of model inference.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

250:24 Zhang et al.

Data provenance helps interpret or debug model inference results. noWorkFlow [43] collects

provenance that captures all computational steps and data leading to an output from Python scripts.

LAMP [37]’s fine-grained provenance model records computation dependencies for graphical ML

model inference (i.e., PageRank), adopts automatic differentiation to explain model inference results,

and uses provenance to decouple the intensive derivative computation from the models. Deep

learning frameworks also builds computational graphs, such as PyTorch [3]. In contrast, PXAI

offers a more general approach applicable to various AI/ML models. It enhances the computational

efficiency of model-agnostic XAI tools through provenance-enabled model inference and the

introduction of XAI-approximate.

Some studies, such as those by Deutch et al. [15], Milo et al. [39], and P3 [58], have leveraged

provenance and approximate provenance to explain inference results within DataLog and ProbLog

programs. In contrast, PXAI expands the scope to encompass a broader array of ML models.

10 Conclusion
In this paper, we introduced PXAI, a local and model-agnostic XAI tool, following a sample-then-

inference procedure. To decouple XAI from AI/ML models, we create a provenance model that

tracks the creation and transformation of all data within AI/ML models. To exclude insignificant

variables and computations without affecting the explanations, we define and design searching

algorithms for approximate subgraphs that are XAI-approixmate. Our evaluation shows that PXAI

derives reasonable explanations and that PXAI significantly improves the computation efficiency

of XAI tools.

Acknowledgments
The authors would like to thank the anonymous shepherd and reviewers for their helpful comments

and feedback, which improved this work. This material is based upon work supported by the

National Science Foundation under Grant No. CNS-1704189.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

Provenance-Enabled Explainable AI 250:25

References
[1] [n. d.]. Alchemy - Open Source AI. http://alchemy.cs.washington.edu/alchemy1.html

[2] [n. d.]. The Boost Graph Library (BGL). https://www.boost.org/doc/libs/1_80_0/libs/graph/doc/index.html

[3] [n. d.]. Overview of PyTorch Autograd Engine. https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

[4] Somak Aditya, Yezhou Yang, and Chitta Baral. 2018. Explicit Reasoning over End-to-End Neural Architectures for

Visual Question Answering. In AAAI.
[5] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, andWojciech Samek.

2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10, 7
(2015), e0130140.

[6] Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. 2015. Hinge-Loss Markov Random Fields and

Probabilistic Soft Logic. Journal of Machine Learning Research 18 (2015), 109:1–109:67.

[7] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and Jaehoon Amir Safavi. 2017. Mitigating Poisoning Attacks on

Machine Learning Models: A Data Provenance Based Approach. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security (Dallas, Texas, USA) (AISec ’17). Association for Computing Machinery, New York, NY, USA,

103–110. https://doi.org/10.1145/3128572.3140450

[8] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,

Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020.

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.

Information Fusion 58 (2020), 82–115. https://doi.org/10.1016/j.inffus.2019.12.012

[9] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why and where: A characterization of data provenance.

In International conference on database theory. Springer, 316–330.
[10] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. 2015. Intelligible Models for

HealthCare: Predicting Pneumonia Risk and Hospital 30-Day Readmission. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Sydney, NSW, Australia) (KDD ’15). Association for

Computing Machinery, New York, NY, USA, 1721–1730. https://doi.org/10.1145/2783258.2788613

[11] Adriane P. Chapman, H. V. Jagadish, and Prakash Ramanan. 2008. Efficient provenance storage. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data (Vancouver, Canada) (SIGMOD ’08). Association
for Computing Machinery, New York, NY, USA, 993–1006. https://doi.org/10.1145/1376616.1376715

[12] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper:

A Low-Latency Online Prediction Serving System. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 613–627. https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/crankshaw

[13] Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl. 2020. Multi-objective counterfactual explanations.

In Parallel Problem Solving from Nature–PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The Netherlands,
September 5-9, 2020, Proceedings, Part I. Springer, 448–469.

[14] Li Deng. 2012. The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing
Magazine 29, 6 (2012), 141–142.

[15] Daniel Deutch, Amir Gilad, and Yuval Moskovitch. 2015. Selective provenance for datalog programs using top-k

queries. Proc. VLDB Endow. 8, 12 (aug 2015), 1394–1405. https://doi.org/10.14778/2824032.2824039

[16] Hailun Ding, Juan Zhai, Dong Deng, and Shiqing Ma. 2023. The Case for Learned Provenance Graph Storage

Systems. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 3277–3294.

https://www.usenix.org/conference/usenixsecurity23/presentation/ding-hailun-provenance

[17] P. Domingos and D. Lowd. 2009. . https://doi.org/10.2200/S00206ED1V01Y200907AIM007

[18] Pedro Domingos and Daniel Lowd. 2019. Unifying logical and statistical AI with Markov logic. Commun. ACM 62, 7

(2019), 74–83.

[19] Jaimie Drozdal, Justin Weisz, Dakuo Wang, Gaurav Dass, Bingsheng Yao, Changruo Zhao, Michael Muller, Lin Ju, and

Hui Su. 2020. Trust in AutoML: exploring information needs for establishing trust in automated machine learning

systems. In Proceedings of the 25th International Conference on Intelligent User Interfaces (Cagliari, Italy) (IUI ’20).
Association for Computing Machinery, New York, NY, USA, 297–307. https://doi.org/10.1145/3377325.3377501

[20] Patrick Forré and Joris M Mooij. 2017. Markov properties for graphical models with cycles and latent variables. arXiv
preprint arXiv:1710.08775 (2017).

[21] Víctor Garcia Satorras and Max Welling. 2021. Neural Enhanced Belief Propagation on Factor Graphs. In Proceedings
of The 24th International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 130), Arindam Banerjee and Kenji Fukumizu (Eds.). PMLR, 685–693. https://proceedings.mlr.press/v130/garcia-

satorras21a.html

[22] Antonio A. Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. 2019. Making AI Forget You: Data Deletion in
Machine Learning. Curran Associates Inc., Red Hook, NY, USA.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

http://alchemy.cs.washington.edu/alchemy1.html
https://www.boost.org/doc/libs/1_80_0/libs/graph/doc/index.html
https://pytorch.org/blog/overview-of-pytorch-autograd-engine/
https://doi.org/10.1145/3128572.3140450
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/1376616.1376715
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.14778/2824032.2824039
https://www.usenix.org/conference/usenixsecurity23/presentation/ding-hailun-provenance
https://doi.org/10.2200/S00206ED1V01Y200907AIM007
https://doi.org/10.1145/3377325.3377501
https://proceedings.mlr.press/v130/garcia-satorras21a.html
https://proceedings.mlr.press/v130/garcia-satorras21a.html

250:26 Zhang et al.

[23] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. 2015. Peeking inside the black box: Visualizing statistical

learning with plots of individual conditional expectation. journal of Computational and Graphical Statistics 24, 1 (2015),
44–65.

[24] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance Semirings. In Proceedings of the Twenty-Sixth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (Beijing, China) (PODS ’07). Association
for Computing Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/1265530.1265535

[25] David Gunning and David Aha. 2019. DARPA’s explainable artificial intelligence (XAI) program. AI magazine 40, 2
(2019), 44–58.

[26] Wajih Ul Hassan, Mohammad A. Noureddine, Pubali Datta, and Adam Bates. 2020. OmegaLog: High-Fidelity Attack

Investigation via Transparent Multi-layer Log Analysis. Proceedings 2020 Network and Distributed System Security
Symposium (2020). https://api.semanticscholar.org/CorpusID:211268590

[27] Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele, and Trevor Darrell. 2016. Gen-

erating visual explanations. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part IV 14. Springer, 3–19.

[28] Andreas Holzinger, Randy Goebel, Ruth Fong, Taesup Moon, Klaus-Robert Müller, and Wojciech Samek. 2022. xxAI-

beyond explainable artificial intelligence. In xxAI-Beyond Explainable AI: International Workshop, Held in Conjunction
with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers. Springer, 3–10.

[29] Die Hu, Dan Feng, Yulai Xie, Gongming Xu, Xinrui Gu, and Darrell Long. 2020. Efficient Provenance Management

via Clustering and Hybrid Storage in Big Data Environments. IEEE Transactions on Big Data 6, 4 (2020), 792–803.

https://doi.org/10.1109/TBDATA.2019.2907116

[30] Kaggle. [n. d.]. Credit Score Classification. https://www.kaggle.com/datasets/parisrohan/credit-score-classification

[31] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not enough, learn to criticize! criticism for

interpretability. Advances in neural information processing systems 29 (2016).
[32] Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press.

[33] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack Provenance via Binary-based Execution

Partition. In 20th Annual Network and Distributed System Security Symposium, NDSS 2013, San Diego, California,
USA, February 24-27, 2013. The Internet Society. https://www.ndss-symposium.org/ndss2013/high-accuracy-attack-

provenance-binary-based-execution-partition

[34] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santambrogio, Markus Weimer, and Matteo

Interlandi. 2018. {PRETZEL}: Opening the black box of machine learning prediction serving systems. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 611–626.

[35] H-A Loeliger. 2004. An introduction to factor graphs. IEEE Signal Processing Magazine 21, 1 (2004), 28–41.
[36] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. Advances in neural

information processing systems 30 (2017).
[37] Shiqing Ma, Yousra Aafer, Zhaogui Xu, Wen-Chuan Lee, Juan Zhai, Yingqi Liu, and Xiangyu Zhang. 2017. LAMP: Data

Provenance for Graph Based Machine Learning Algorithms through Derivative Computation. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). Association for

Computing Machinery, New York, NY, USA, 786–797. https://doi.org/10.1145/3106237.3106291

[38] Stephen Macke, Hongpu Gong, Doris Jung-Lin Lee, Andrew Head, Doris Xin, and Aditya Parameswaran. 2021.

Fine-Grained Lineage for Safer Notebook Interactions. Proc. VLDB Endow. 14, 6 (feb 2021), 1093–1101. https:

//doi.org/10.14778/3447689.3447712

[39] Tova Milo, Yuval Moskovitch, and Brit Youngmann. 2020. Contribution Maximization in Probabilistic Datalog. In 2020
IEEE 36th International Conference on Data Engineering (ICDE). 817–828. https://doi.org/10.1109/ICDE48307.2020.00076

[40] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining machine learning classifiers through diverse

counterfactual explanations. In Proceedings of the 2020 conference on fairness, accountability, and transparency. 607–617.
[41] Kevin Murphy, Yair Weiss, and Michael I Jordan. 2013. Loopy belief propagation for approximate inference: An

empirical study. arXiv preprint arXiv:1301.6725 (2013).
[42] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-Grained Lineage Tracing and Reuse in Machine

Learning Systems. In Proceedings of the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD ’21). Association for Computing Machinery, New York, NY, USA, 1426–1439. https://doi.org/10.1145/3448016.

3452788

[43] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire. 2017. noWorkflow: a tool for collecting,

analyzing, and managing provenance from python scripts. Proc. VLDB Endow. 10, 12 (aug 2017), 1841–1844. https:

//doi.org/10.14778/3137765.3137789

[44] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence d’Alché Buc,

Emily Fox, and Hugo Larochelle. 2021. Improving Reproducibility in Machine Learning Research (a Report from the

NeurIPS 2019 Reproducibility Program). J. Mach. Learn. Res. 22, 1, Article 164 (jan 2021), 20 pages.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

https://doi.org/10.1145/1265530.1265535
https://api.semanticscholar.org/CorpusID:211268590
https://doi.org/10.1109/TBDATA.2019.2907116
https://www.kaggle.com/datasets/parisrohan/credit-score-classification
https://www.ndss-symposium.org/ndss2013/high-accuracy-attack-provenance-binary-based-execution-partition
https://www.ndss-symposium.org/ndss2013/high-accuracy-attack-provenance-binary-based-execution-partition
https://doi.org/10.1145/3106237.3106291
https://doi.org/10.14778/3447689.3447712
https://doi.org/10.14778/3447689.3447712
https://doi.org/10.1109/ICDE48307.2020.00076
https://doi.org/10.1145/3448016.3452788
https://doi.org/10.1145/3448016.3452788
https://doi.org/10.14778/3137765.3137789
https://doi.org/10.14778/3137765.3137789

Provenance-Enabled Explainable AI 250:27

[45] Atul Rawal, James McCoy, Danda B. Rawat, Brian M. Sadler, and Robert St. Amant. 2022. Recent Advances in

Trustworthy Explainable Artificial Intelligence: Status, Challenges, and Perspectives. IEEE Transactions on Artificial
Intelligence 3, 6 (2022), 852–866. https://doi.org/10.1109/TAI.2021.3133846

[46] Christopher Ré and Dan Suciu. 2008. Approximate lineage for probabilistic databases. In PVLDB. 797–808.
[47] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i trust you?" Explaining the predictions

of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining. 1135–1144.

[48] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-precision model-agnostic explanations.

In Proceedings of the AAAI conference on artificial intelligence, Vol. 32.
[49] Matthew Richardson and Pedro Domingos. 2006. Markov Logic Networks. Mach. Learn. 62, 1-2 (Feb. 2006), 107–136.
[50] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J. Anders, and Klaus-Robert Müller. 2021.

Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications. Proc. IEEE 109, 3 (2021),

247–278. https://doi.org/10.1109/JPROC.2021.3060483

[51] Sebastian Schelter, Joos-Hendrik Böse, Johannes Kirschnick, Thoralf Klein, and Stephan Seufert. 2017. Automatically

tracking metadata and provenance of machine learning experiments. In NeurIPS 2017. https://www.amazon.science/

publications/automatically-tracking-metadata-and-provenance-of-machine-learning-experiments

[52] Parag Singla and Pedro M Domingos. 2008. Lifted First-Order Belief Propagation.. In AAAI, Vol. 8. 1094–1099.
[53] Congzheng Song and Vitaly Shmatikov. 2019. Auditing data provenance in text-generation models. In Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 196–206.
[54] Evan R Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J Franklin, and Benjamin Recht. 2017. Keystoneml:

Optimizing pipelines for large-scale advanced analytics. In 2017 IEEE 33rd international conference on data engineering
(ICDE). IEEE, 535–546.

[55] Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and Mounia Lalmas. 2017. Interpretable predictions of tree-

based ensembles via actionable feature tweaking. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining. 465–474.

[56] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection regulation (gdpr). A Practical Guide, 1st
Ed., Cham: Springer International Publishing 10, 3152676 (2017), 10–5555.

[57] Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual explanations without opening the black

box: Automated decisions and the GDPR. Harv. JL & Tech. 31 (2017), 841.
[58] Shaobo Wang, Hui Lyu, Jiachi Zhang, Chenyuan Wu, Xinyi Chen, Wenchao Zhou, Boon Thau Loo, Susan B. Davidson,

and Chen Chen. 2020. Provenance for Probabilistic Logic Programs. In Extending Database Technology. 145–156.
[59] Yinjun Wu, Val Tannen, and Susan B Davidson. 2020. Priu: A provenance-based approach for incrementally updating

regression models. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 447–462.
[60] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya Parameswaran. 2018. HELIX: Holistic

Optimization for Accelerating Iterative Machine Learning. Proc. VLDB Endow. 12, 4 (dec 2018), 446–460. https:

//doi.org/10.14778/3297753.3297763

[61] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. XGNN: Towards Model-Level Explanations of Graph Neural

Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(Virtual Event, CA, USA) (KDD ’20). Association for Computing Machinery, New York, NY, USA, 430–438. https:

//doi.org/10.1145/3394486.3403085

[62] Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, and Max Welling. 2017. Visualizing Deep Neural Network Decisions:

Prediction Difference Analysis. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=BJ5UeU9xx

Received April 2024; revised July 2024; accepted August 2024

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.

https://doi.org/10.1109/TAI.2021.3133846
https://doi.org/10.1109/JPROC.2021.3060483
https://www.amazon.science/publications/automatically-tracking-metadata-and-provenance-of-machine-learning-experiments
https://www.amazon.science/publications/automatically-tracking-metadata-and-provenance-of-machine-learning-experiments
https://doi.org/10.14778/3297753.3297763
https://doi.org/10.14778/3297753.3297763
https://doi.org/10.1145/3394486.3403085
https://doi.org/10.1145/3394486.3403085
https://openreview.net/forum?id=BJ5UeU9xx

	Abstract
	1 Introduction
	2 Motivation: Applying Existing XAI tools on a PGM Application
	2.1 Probabilistic Graphical Model
	2.2 Running Example

	3 PXAI Overview
	4 PXAI Provenance Model
	4.1 Definitions
	4.2 Provenance-Enabled Model Inference

	5 Approximate Subgraph
	5.1 Definitions
	5.2 Provenance-Enabled Approximate Subgraph Searching

	6 Implementation
	7 Evaluation
	7.1 Case Study 1: Visual Question Answering (Probabilistic Graphical Model)
	7.2 Case Study 2: Text Classification (Probabilistic Graphical Model)
	7.3 Case Study 3: Credit Score Classification (Multi-Layer Perceptron)
	7.4 Case Study 4: ML Deletion (k-Means Clustering)

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

